phân tích đa thức thành nhân tử:\(2\left(x^2+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
Phân tích đa thức thành nhân tử:
\(M=2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
Phân tích các đa thức thành nhân tử bằng phương pháp nhẩm nghiệm:
a) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
b) \(x^3-5x^2+8x-4\)
Phân tích đa thức sau thành nhân tử bằng phương pháp nhẩm nghiệm:
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
phân tích đa thức thành nhân tử;
a)\(x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)+2abc\)
b)\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
phân tích đa thức thành nhân tử:
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
Phân tích đa thức thành nhân tử :
1) \(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
2)\(B=2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
3)\(\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
Phân tích các đa thức sau thành nhân tử.
a, \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)+3xyz.\)
b, \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)
c, \(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
phân tích đa thức thành nhân tử:
a.\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
b.\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-z^2\right)+xyz\left(xyz-1\right)\)