Ta có:
\(\left(x+y\right)^5-x^5-y^5=\left(x+y\right)^5-\left(x^5+y^5\right)\)
\(=\left(x+y\right)^5-\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^4-x^4+x^3y-x^2y^2+xy^3-y^4\right]\)
\(=\left(x+y\right)\left[x^4+4x^3y+6x^2y^2+4xy^3+y^4-x^4+x^3y-x^2y^2+xy^3-y^4\right]\)
\(=\left(x+y\right)\left(5x^3y+5x^2y^2+5xy^3\right)=5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
A = ( x + y )5 - x5 - y5
A = ( x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 ) - x5 - y5
A = 5x4y + 10x3y2 + 10x2y3 + 5xy4
A = 5xy( x3 + 2x2y + 2xy2 + y3 )
A = 5xy[ ( x + y )( x2 - xy + y2 ) + 2xy( x + y ) ]
A = 5xy( x + y )( x2 + xy + y2 )