a, \(x^2\) + 4\(x\) - y2 + 4
= (\(x^2\) + 4\(x\) + 4) - y2
= (\(x\) + 2)2 - y2
= (\(x\) + 2 - y)(\(x\) + 2 + y)
b, 2\(x^2\) - 18
= 2.(\(x^2\) -9)
= 2.(\(x\) -3).(\(x\) + 3)
c, \(x^3\) - \(x^2\) - \(x\) + 1
= (\(x^3\) + 1) - (\(x^2\) + \(x\))
= (\(x\) + 1)(\(x\)2 - \(x\) + 1) - \(x\).(\(x\) + 1)
=(\(x\) + 1).(\(x^2\) - \(x\) + 1 - \(x\))
= (\(x\) + 1).(\(x\) - 1)2
d, \(x^2\) - 7\(xy\) + 10y2
= (\(x^2\) - 7\(xy\) + \(\dfrac{49}{4}\)y2) - \(\dfrac{9}{4}\)y2
= (\(x\) - \(\dfrac{7}{2}\)y)2 - \(\dfrac{9}{4}\)y2
= (\(x\) - \(\dfrac{7}{2}\)y - \(\dfrac{3}{2}\)y).(\(x\) - \(\dfrac{7}{2}\)y + \(\dfrac{3}{2}\)y)
= (\(x\) - 5y).(\(x\) - 2y)