a)Phân tích đa thức A=(x-y)z^3+(y-z)x^3+(z-x)y^3
b)Tính giá trị của A biết x, y, t lần lượt là ba số tự nhiên liên tiếp có tổng bằng 36.
Phân tích đa thức thành nhân tử:
\(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(x-y+z\right)^3-\left(-x+y+z\right)^3\)
phân tích đa thức thành nhân tử:
a.\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
b.\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-z^2\right)+xyz\left(xyz-1\right)\)
phân tích đa thức thành nhân tử \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
Cho x,y,z khác 0 và x+y+z=2008. tính giá trị biểu thức P= \(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
cho x;y;z là các số thực dương thỏa mãn x+y+z=3xyz.Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{yz}{x^3\left(z+2y\right)}+\frac{zx}{y^3\left(x+2z\right)}+\frac{xy}{z^3\left(y+2x\right)}\)
Phân tích đa thức gthành nhân tử :
1,\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\)\(\left(z^2-x^2\right)\)( cái này nếu được thì dùng phương pháp xét giá trị riêng nha giúp mình nha . )
\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
Mn giúp mik nha! Ai làm đúng hết mình tk cho..
Cho x,y,z là 3 số khác 0 thỏa mãn điều kiện x3+y3+z3=3xyz và x+y+z=0.Tính giá trị của biểu thức:
\(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Phân tích đa thức thành nhân tử :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)
\(=x^3+3.x^2.y+3.x.y^2+y^3+z^3-x^3-y^3-z^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
\(=3.x^2.y+3.x.y^2+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
\(=3xy.\left(x+y\right)+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
Cô ơi, em phải làm tiếp sao ạ ? cô ơi, cô giải chi tiết giúp em nhe cô, em cám ơn cô nhiều ạ, hihi ^^