Phân tích đa thức sau thành nhân tử:
a) \(x^2-2xy+3x-3y+y^2-4\)
b) \(2\left(x^2-6x+1\right)^2+5\left(x^2-6x+1\right)\left(x^2+1\right)+2\left(x^2+1\right)^2\)
Phân tích đa thức thành nhân tử
\(2\left(x^2-6x+1\right)^2+5\left(x^2-6x+1\right)\left(x^2+1\right)+2\left(x^2+1\right)^2\)
Kết quả của 1 đa thức như sau: \(\left(x^2+1\right)^2+2\left(x^2+1\right)\left(x^2+6x-1\right)\left(x^2+6x-1\right)^2-1=\left(x^2+1+x^2+6x-1\right)^2-1\)Giải thích tại sao lai phân tích ra đươc như vậy(giải chi tiết,dễ hiểu mình sẽ tick)
1) \(\left(3-x^2\right)+6-2x=0\)
2) \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
3) \(x^2-6x+4\left(x-6\right)=0\)
4) \(\left(x+1\right)\left(2x-3\right)=x\left(x+1\right)\)
Phân tích các đa thức sau thành nhân tử
a) \(4x^4+4x^3+5x^2+2x+1\)
b) \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-3\)
c) \(\left(x-2\right)^2\left(2x-5\right)\left(2x-3\right)-5\)
d) \(x^4+6x^3+7x^2+6x+1\)
e) \(\left(x+2\right)\left(x-4\right)\left(x+6\right)\left(x-12\right)+36x^2\)
f) \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
Rút gọn:
a) \(\dfrac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
b) \(\dfrac{6x^2y^2}{8xy^5}\)
c) \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}\)
d) \(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
e) \(\dfrac{x^2-2x+1}{x^2-1}\)
f) \(\dfrac{8x-4}{8x^3-1}\)
g) \(\dfrac{x^2+5x+6}{x^2+4x+4}\)
k) \(\dfrac{20x^2-45}{\left(2x+3\right)^2}\)
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
Phân tích các đa thức sau thành nhân tử:
\(A=4x^2+6x\). \(B=\left(2x+3\right)^2-x\left(2x+3\right)\). \(C=\left(9x^2-1\right)-\left(3x-1\right)^2\).
\(D=x^3-16x\). \(E=4x^2-25y^2\). \(G=\left(2x+3\right)^2-\left(2x-3\right)^2\).
Bài 1 : tìm các giá trị của x biết :
a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)
b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)
c) \(x^2=-6x-8\)
d) \(\frac{\left(x+1\right)^2}{3}-\frac{\left(x-2\right)^2}{3}=\frac{2x+1}{2}-\frac{\left(x-3\right)^2}{6}\)