Chọn A.
Phần thực, phần ảo của z lần lượt là 1;1.
Chọn A.
Phần thực, phần ảo của z lần lượt là 1;1.
Phần thực và phần ảo của số phức z thỏa mãn: (1 + i)2(2 - i) z = 8 + i + (1 + 2i)z lần lượt là?
A. -3; -2
B. 2; 3
C. 2; -3
D. Đáp án khác.
Cho số phức z thỏa mãn 5 z + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a+b bằng
A. 13
B. -5
C. 9
D. 5
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bẳng -2
b) Phần ảo của z bẳng 3
c) Phần thực của z thuộc khoảng (-1;2)
d) Phần ảo của z thuộc đoạn [1;3]
e) Phần thực và phần ảo đều thuộc đoạn [-2; 2]
Cho số phức z thỏa z = 1+ i+ i2+ i3+...+ i2016. Khi đó phần thực và phần ảo của z lần lượt là
A. 0 và -1.
B. 0 và 1.
C. 1 và 1.
D. 1 và 0.
Cho số phức z thỏa z = 1 + i + i 2 + i 3 + . . . + i 2016 . Khi đó phần thực và phần ảo của z lần lượt là
A. 0 và -1.
B. 0 và 1.
C. 1 và 1.
D. 1 và 0.
Tìm tổng phần thực và phần ảo của số phức z thỏa mãn: (1 - i) ( z - 2i) = 2 + i.
A. 4.
B. 3.
C. 5.
D. 7.
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bằng phần ảo của nó ;
b) Phần thực của z là số đối của phần ảo của nó ;
c) Phần ảo của z bằng hai lần phần thực của nó cộng với 1;
d) Modun của z bằng 1, phần thực của z không âm.
Số phức z thỏa mãn phương trình 2 - 3 i z + 4 + i z ¯ = - 1 + 3 i 2 có phần thực và phần ảo lần lượt là:
A: -2; 5
B. -2 và 3
C. 2 và -3
D. 3 và 5
Gọi z là số phức có môđun nhỏ nhất và thỏa mãn z + 1 + i = z ¯ + i . Tổng phần thực và phần ảo của số phức z bằng
Cho z là số phức thỏa mãn điều kiện 2 z − 1 1 + i + z ¯ + 1 1 − i = 2 − 2 i . Tính tổng bình phương phần thực và phần ảo của số phức w = 9 z 2 + 6 z + 1
A. 25
B. 1
C. 49
D. 41