Tử số = \(1.2.4+2.3.5+3.4.6+...+100.101.103\)
\(=1.2.\left(3+1\right)+2.3.\left(4+1\right)+3.4.\left(5+1\right)+...+100.101.\left(102+1\right)\)
\(=1.2.3+1.2+2.3.4+2.3+3.4.5+3.4+...+100.101.102+100.101\)
\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)+\left(1.2+2.3+3.4+...+100.101\right)\)
Mẫu số = \(1.2^2+2.3^2+3.4^2+...+100.101^2\)
\(=1.2.\left(3-1\right)+2.3.\left(4-1\right)+3.4.\left(5-1\right)+...+100.101.\left(102-1\right)\)
\(=1.2.3-1.2+2.3.4-2.3+3.4.5-3.4+...+100.101.102-100.101\)
\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)-\left(1.2+2.3+3.4+...+100.101\right)\)
đặt \(A=1.2.3+2.3.4+3.4.5+...+100.101.102\) và \(B=1.2+2.3+3.4+...+100.101\)
bạn tự tính : \(A=\frac{100.101.102.103}{4}=25.101.102.103\); \(B=\frac{100.101.102}{3}=100.101.34\)
rồi thay vào tìm P=\(\frac{A+B}{A-B}\)