`@` `\text {Ans}`
`\downarrow`
`a,`
`P(x)+Q(x) = (3x^4-2x^3+3x+11)+(3x^2- x^3-5x+3x+4-x+2x^4)`
`= 3x^4-2x^3+3x+11+3x^2- x^3-5x+3x+4-x+2x^4`
`= (3x^4 + 2x^4) + (-2x^3 - x^3) + 3x^2 + (3x + 3x - 5x - x) + (11+4)`
`= 5x^4 - 3x^3 + 3x^2 + 15`
`b,`
` A(x) = P(x) + B(x)`
Thay `B(x) = 2x^3 - 3x^4 - 2`
`A(x) = P(x) + B (x)`
`=> A (x) = (2x^3 - 3x^4 - 2)+(3x^4 - 2x^3 + 3x + 11)`
`= 2x^3 - 3x^4 - 2+ 3x^4 - 2x^3 + 3x + 11`
`= (2x^3 - 2x^3) + (-3x^4 + 3x^4) + 3x + (-2+11) `
`= 3x + 9`
`A(x) = 3x+9 = 0`
`=> 3x = 0-9`
`=> 3x = -9`
`=> x = -9 \div 3`
`=> x = -3`
Vậy, nghiệm của đa thức là `x = -3.`