2P = 2 + 2^2 + ... + 2^2011
2P - P = (2 - 2) + (2^2 - 2^2) + ...... + (2^2010 - 2^2010) + 2^2011 - 1
P = 2^2011 - 1
2^2011 > 2^2011 - 1
Vậy P < Q
Tích há
\(P=2^0+2^1+2^2+...+2^{2010}\)
\(2P=2^1+2^2+2^3+...+2^{2011}\)
\(2P-P=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(P=2^{2011}-2^0\)
\(P=2^{2011}-1\)
Vì \(2^{2011}-1<2^{2011}\)
Nên P<Q
Tick mik nha