Đặt \(\left(a;b;c\right)=\left(\dfrac{3x}{2};y;z\right)\) \(\Rightarrow x;y;z>0\)
\(P=\dfrac{y+z}{x}+\dfrac{2x+z}{y}+\dfrac{4\left(y-z\right)}{x+z}\)
\(=\dfrac{y}{x}+\dfrac{z}{x}+1-1+\dfrac{x}{y}+\dfrac{x+z}{y}+\dfrac{4\left(y-z\right)}{x+z}+4-4\)
\(=\dfrac{y}{x}+\dfrac{x}{y}+\dfrac{x+z}{x}+\dfrac{x+z}{y}+\dfrac{4x+4y}{x+z}-5\)
\(=\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{x+z}{x}+\dfrac{4x}{x+z}\right)+\left(\dfrac{x+z}{y}+\dfrac{4y}{x+z}\right)-5\)
\(P\ge2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{4x\left(x+z\right)}{x\left(x+z\right)}}+2\sqrt{\dfrac{4y\left(x+z\right)}{y\left(x+z\right)}}-5=5\)
\(P_{min}=5\) khi \(x=y=z\) hay \(b=c=\dfrac{2a}{3}\)