\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5150\)
\(100x+\dfrac{\left(100+1\right)\times100}{2}=5150\)
\(100x+5050=5150\)
\(100x=100\)
\(x=1\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5150\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5150\)
\(100x+\left(100+1\right).100:2=5150\)
\(100x+5050=5150\)
\(100x=100\)
\(x=1\)
(x+1)+(x+2)+(x+3)+(x+4)+...+(x+100) = 5150
100x + (1 + 2 + 3 + 4 + ... + 100) = 5150
100x + 5050 = 5150
100x = 100
x = 100 : 100
x = 1
( 1 + x ) + ( 2 + x ) + ( 3 + x ) + ... + ( x + 100) = 5150
x.100 + 5050 = 5150
x100 = 5150 - 5050
x100 = 100
x = 100 : 100
x = 1