(x-1)(x\(^5\)+x\(^4\)+x\(^3\)+x\(^2\)+x+1)
=x(\(x^5+x^4+x^3+x^2+x+1\))-1(\(x^5+x^4+x^3+x^2+x+1\))
= x.\(x^5+x\cdot x^4+x\cdot x^3+x\cdot x^2+x\cdot x+x\cdot1\)-1.\(x^5-1\cdot x^4-1\cdot x^3-1\cdot x^2-1\cdot x-1\cdot1\)
=\(x^6\)+\(x^5\)\(+x^4\)+\(x^3\)+\(x^2\)+1x -1\(x^5\)-1\(x^4\)-1\(x^3\)-1\(x^2\)-1x -1
=\(x^6\)+(\(x^5\)-1\(x^5\))+(x\(^4\)-1\(x^4\))+(\(x^3\)-1\(x^3\))+(x\(^2\)-1\(x^2\))+(1x-1x)-1
=x\(^6\)-1