Ta có: 3 + x = 3 ⇔ 3 + x = 9 ⇔ x = 6 ⇔ x = 36
Vậy chọn đáp án D.
Ta có: 3 + x = 3 ⇔ 3 + x = 9 ⇔ x = 6 ⇔ x = 36
Vậy chọn đáp án D.
Nếu x thỏa mãn điều kiện 3 + x = 3 thì x nhận giá trị là:
A.0
B.6
C.9
D.36
nếu x thoã mãn điều kiện:\(\sqrt{3+\sqrt{x}}=3\)thì x nhận giá trị bao nhiêu?
cho các số thực x,y thỏa mãn x^3+y^3-6xy+11=0 giá trị P = x+y thỏa mãn điều kiện nào dưới đây
a. x+y < -3
b. x+y > -3/2
c. x+y > 1/5
d. x+y < -2
Câu 3. Nêux thoả mãn điều kiện sqrt(13 + sqrt(x)) = 4 thìn nhận giá trị là 3 B9 C 25 D. 81
cho x,y thỏa mãn điều kiện x+y=1 và x>0. tìm giá trị lớn nhất của biểu thức B=x2y3
Cho x,y là số thực thỏa mãn điều kiện x+y=1.Tìm giá trị nhỏ nhất của A= x^3+y^3
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
Cho hai số thực c,y khác 0 thay đổi thỏa mãn điều kiện (x+y)xy=x2+y2-xy
Tính giá trị lớn nhất chủa biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\)