\(\frac{1}{a}-\frac{1}{b}=1\Rightarrow\frac{1}{a}=\frac{b+1}{b}\Rightarrow a=\frac{b}{b+1}\\
\)thế vào P ta có:
\(P=\frac{\frac{b}{b+1}-\frac{2b^2}{b+1}-b}{\frac{2b}{b+1}+\frac{3b^2}{b+1}-2b}=\frac{\frac{b-2b^2-b\left(b+1\right)}{b+1}}{\frac{2b+3b^2-2b\left(b+1\right)}{b+1}}=\frac{b-2b^2-b^2-b}{2b+3b^2-2b^2-2b}=\frac{-3b^2}{b^2}=-3\)
1/a - 1/b = 1
<=> 1/a = 1 + 1/b = b+1/b
<=> a = b/b+1
Thay vào P ta được:
\(P=\frac{\frac{b}{b+1}-2.\frac{b}{b+1}.b-b}{2.\frac{b}{b+1}+3.\frac{b}{b+1}.b-2b}\)\(=\frac{b.\left(\frac{1}{b+1}-\frac{2b}{b+1}-\frac{b+1}{b+1}\right)}{b.\left(\frac{2}{b+1}+\frac{3b}{b+1}-\frac{2b+2}{b+1}\right)}\)= -3