Từ đề bài ta có : \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\) ( T/c tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
Và \(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\left(\frac{a}{c}\right)^{2003}=\left(\frac{b}{d}\right)^{2003}\Leftrightarrow\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}\)
Áp dụng t/x dãy tỉ số bằng nhau ta có : \(\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}=\frac{a^{2003}+b^{2003}}{c^{2003}+d^{2003}}\left(1\right)\)
Mà \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}=\frac{\left(a-b\right)^{2003}}{\left(c-d\right)^{2003}}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{\left(a-b\right)^{2003}}{\left(c-d\right)^{2003}}=\frac{a^{2003}+b^{2003}}{c^{2003}+d^{2003}}\left(đpcm\right)\)