Nếu Δ RSK đồng dạng Δ PQM có: RS/PQ = RK/PM = SK/QM thì
A. R S K ^ = P Q M ^
B. R S K ^ = P M Q ^
C. R S K ^ = M P Q ^
D. R S K ^ = Q P M ^
Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:
A. Δ RSK ∼ Δ PQM
B. Δ RSK ∼ Δ MPQ
C. Δ RSK ∼ Δ QPM
D. Δ RSK ∼ Δ QMP
Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:
A. Δ RSK đồng dạng Δ PQM
B. Δ RSK đồng dạng Δ MPQ
C. Δ RSK đồng dạng Δ QPM
D. Δ RSK đồng dạng Δ QMP
Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?
A. Δ ABC ∼ Δ DEF
B. ABCˆ = EFDˆ
C. ACBˆ = ADFˆ
D. ACBˆ = DEFˆ
Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:
A. Δ RSK ∼ Δ PQM
B. Δ RSK ∼ Δ MPQ
C. Δ RSK ∼ Δ QPM
D. Δ RSK ∼ Δ QMP
Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì
A. RSKˆ = PQMˆ
B. RSKˆ = PMQˆ
C. RSKˆ = MPQˆ
D. RSKˆ = QPMˆ
Bài 4: Chọn câu trả lời đúng?
A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF
C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF
D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
A. 17,5 B. 18
C. 18,5 D. 19
II. Bài tập tự luận
Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Cho
P=a+b+c+d
Q=a+b-c-d
R= a-b+c-d
S=a-b-c+d
Tính PQ(P^2+Q^2) - RS(R^2+S^2)
Cho hai phân thức P Q và R S thỏa mãn P Q = R S và P ≠ Q.
Chứng minh: R ≠ S và P Q + P = R S + R .
hình vuông MNPQ, K ∈ PQ. MK giao NP tại A. B thuộc tia đối tia QP, QB= AN.
a) c.m ΔQMK ~ Δ NAM., QM.MN=QK.NA
b) c.m ΔMQB ~ Δ KQM và ΔAMB vuông cân
c. Phân giác góc AMB cắt AB tại I. MI giao PB tại H. MQ giao AB tại J. C/m I,Q,N thẳng hàng và AM.IN=MN.IA + MI.AN
d) IQ giao HJ tại O, BO giao MJ tại S. C/m : SQ/SJ = MQ/MJ
Cho hai phân thức \(\frac{P}{Q}\)và \(\frac{R}{S}\). Chứng tỏ rằng :
a) Nếu \(\frac{P}{Q}=\frac{R}{S}\)thì \(\frac{P+Q}{Q}=\frac{R+S}{S};\)
b) Nếu \(\frac{P}{Q}=\frac{R}{S}\)và \(P\ne Q\)thì \(R\ne S\)và \(\frac{P}{Q-P}=\frac{R}{S-R}.\)
Cô ơi, cô đừng giải nhe cô, mà cô hướng dẫn giúp em phương pháp chi tiết, dể hiểu và sử dụng các tính chất, công thức nào để giải từng câu a) và câu b) nhe cô, em cám ơn cô nhiều ạ ? ^^
1. trong mỗi trường hợp sau tìm hai đa thức P và Q thõa mãn đẳng thức
a)\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x-1\right)Q}{x^2-4}\)
b)\(\frac{\left(x+2\right)P}{x^2-1}=\frac{\left(x-2\right)Q}{x^2-2x+1}\)
2, cho hai phân thức \(\frac{P}{Q}\)và \(\frac{R}{S}\). chứng tỏ rằng:
a) nếu\(\frac{P}{Q}=\frac{R}{S}\) thì \(\frac{P+Q}{Q}=\frac{R+S}{S}\)
b) nếu\(\frac{P}{Q}=\frac{R}{S}\) và\(P\ne Q\) thì\(R\ne S\) và\(\frac{P}{Q-P}=\frac{R}{S-R}\)