B = 0 ⇒ mặt phẳng (α) // hoặc chứa trục Oy ; C = 0 ⇒ mặt phẳng (α) // hoặc chứa trục Oz
B = 0 ⇒ mặt phẳng (α) // hoặc chứa trục Oy ; C = 0 ⇒ mặt phẳng (α) // hoặc chứa trục Oz
Nếu A = C = 0 và B ≠ 0 hoặc nếu B = C = 0 và A ≠ 0 thì mặt phẳng (α) có đặc điểm gì?
Xét 3 điểm A, B, C của mặt phẳng phức theo thứ tự biểu diễn 3 số phức phân biệt z 1 , z 2 , z 3 thỏa mãn z 1 = z 2 = z 3 . Nếu z 1 + z 2 + z 3 = 0 thì tam giác ABC có đặc điểm gì ?
A. cân
B. vuông
C. có góc 1200
D. đều
Cho mặt cầu S(0;R) và mặt phẳng ( α ). Gọi d là khoảng cách từ O tới ( α ). Khi d < R thì mặt phẳng ( α ) cắt mặt cầu S(O;R) theo giao tuyến là đường tròn có bán kính bằng:
A. R 2 + d 2 B. R 2 - d 2
C. R d d. R 2 - 2 d 2
Cho ba điểm A(0;1;0), B(0;-2;0), C( 3 ; 0 ; 3 ). Tính góc α giữa mặt phẳng (ABC) và mặt phẳng (Oxz)
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6). Hãy viết phương trình mặt phẳng ( α ) đi qua điểm D và song song với mặt phẳng (ABC).
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Cho hai mặt phẳng (α) và (β) có phương trình
(α): x - 2y + 3z + 1 = 0
(β): 2x – 4y + 6z + 1 = 0.
Có nhận xét gì về vecto pháp tuyến của chúng ?
Cho mặt cầu tâm O bán kính r. Gọi ( α ) là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng ( α ) cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C). Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất?
Lập phương trình mặt phẳng ( α ) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng ( β ): x + 2y – z = 0 .