Cho \(a,b\ge1\)CMR \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Cho a,b là 2 số thực thỏa mãn \(a\ge1,b\ge1\)
Cm: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài 1 : Cho a>c , b>c ( a,b,c>0). Cmr : \(\sqrt{c\sqrt{a-c}}+\sqrt{c\sqrt{b-c}}\le\sqrt{ab}\) (Hướng dẫn : chia cả 2 vế cho \(\sqrt{ab}\) , dùng cô-si)
Bài 2 : Cho \(a\ge1;b\ge1\) . Cmr \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Bài 3 : Tìm GTNN của \(A=\left(a+1\right)^2+\left(\frac{a^2}{a+1}+2\right)^2\) với mọi a\(\ne1\)
cho \(a\ge1;b\ge1\). CM : \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
CÁC BẠN GIẢI CHI TIẾP GIÚP MK NHA ! CẢM ƠN RẤT NHIỀU >_^
b1 cho \(a\ge1;b\ge1\)
cm \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
b2 tìm các cặp số nguyên x thoả mãn \(y\left(x-1\right)=x^2+2\)
Chứng minh \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\) với mọi số thực dương \(a:b;c\ge1\)
Cho a,b,c thỏa mãn \(a\ge1,b\ge1,c\ge1\) và abc=8. Chứng minh rằng:
\(ab\sqrt{c-1}+bc\sqrt{a-1}+ac\sqrt{b-1}\le12\)
1. Cho a, b, c, d là các số dương. Chứng minh :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
2. Cho \(a\ge1;b\ge1\).Chứng minh :
\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Cho các số thực dương a,b,c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\). CMR:
\(\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+b}}\ge3\sqrt[6]{abc}\)
Giải:
\(GT\Leftrightarrow ab+bc+ca\ge abc\)
\(\Rightarrow ab\le\frac{ab+bc+ca}{c}\)
\(\Rightarrow\frac{a+b}{\sqrt{ab+c}}\ge\frac{a+b}{\sqrt{\frac{ab+bc+ca}{c}+c}}=\frac{\left(a+b\right)\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Tương tự rồi cộng lại: \(VT\ge\frac{\left(a+b\right)\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}+\frac{\left(b+c\right)\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\left(c+a\right)\sqrt{c}}{\sqrt{\left(b+a\right)\left(b+c\right)}}\)\(\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[6]{abc}\)
Lần sau mấy bạn hỏi bài thì đăng lên nhé!