Ta có : \(a=\frac{bc}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)\(=k\)
\(\Rightarrow k=\frac{3a}{3b}=\frac{2c}{2d}\)
\(\Rightarrow k=\frac{3a+2c}{3b+2d}\)
Do đó : \(\frac{a}{b}=\frac{3a+2c}{3b+2d}\)
\(\Rightarrow a=\frac{b\left(3a+2c\right)}{3b+2d}\)
Áp dụng dãy tỉ số bằng nhau:
\(a=\frac{bc}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\Rightarrow\frac{a}{b}=\frac{3a+2c}{3b+2d}\Rightarrow a=\frac{b\left(3a+2c\right)}{3b+2d}\)