CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học
CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học
Nếu a, b, c là độ dài 3 cạnh của 1 tam giác thỏa mãn điều kiện: a2+b2>5c2 thì c là độ dài cạnh nhỏ nhất
CMR : Nếu a,b,c là độ dài của các cạnh của 1 tam giác thỏa mãn điều kiện a^2 + b^2 > c^2 thì c là độ dài của cạnh nhỏ nhất.
À tiện thể hỏi ai chơi mope.io ko :'>
. Nếu a, b, c là độ dài ba cạnh của một tam giác thỏa mãn điều kiện a2 + b2 > 5c2 thì c là cạnh nhỏ nhất.
Chứng minh: nếu a,b,c là 3 cạnh của tam giác, thỏa mãn a^2 + b^2 > 5c^2 thì c là cạnh ngắn nhất
chứng minh rằng :Nếu độ dài các cạnh của tam giác liên hệ với nhau bất đẳng thức a^2+b^2<5c^2 thì c là độ dài cạnh nhỏ nhất của tam giác
Chứng minh rằng: Nếu độ dài các cạnh của tam giác liên hệ với nhau bởi bất đẳng thức \(^{a^2+b^2>5c^2}\)thì c là độ dài cạnh nhỏ nhất của tam giác.
câu a :TÌM x BIẾT 2.(4x-3)-3.(x+5)+4.(x-10)=5.(x+2)
câu b: 3 CẠNH a,b,c của tam giác thỏa mãn a:b:c=1:1,5:2.ĐỘ DÀI CẠNH hơn độ dài cạnh a là 18cm .Tính chu vi tam giác trên
Cho a,b,c là độ dài của 3 cạnh tam giác. Chứng minh rằng ab + bc+ ca < a2 + b2 + c2 mà
a < hoặc = 0
chứng minh rằng nếu a;b;c là độ dài 3 cạnh của một tam giác thì \(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\)cũng là độ dài 3 cạnh của một tam giác