Lời giải:
Ta thấy: $n^2+n=n(n+1)$ là tích của 2 số nguyên liên tiếp. Trong 2 số nguyên liên tiếp luôn có 1 số chẵn và 1 số lẻ nên $n^2+n=n(n+1)\vdots 2$
Ta có đpcm.
Lời giải:
Ta thấy: $n^2+n=n(n+1)$ là tích của 2 số nguyên liên tiếp. Trong 2 số nguyên liên tiếp luôn có 1 số chẵn và 1 số lẻ nên $n^2+n=n(n+1)\vdots 2$
Ta có đpcm.
Chứng tỏ rằng (n+3)chia hết. cho(n+6)chia hết cho2(với n thuộc tập hợp N)
tìm n thuộc N,chứng minh rằng:
a) (n+10) (n+15) chia hết cho2
b) n(n+1) (2n+1) chia hết cho 6
c) n(n+1) (n+2) chia hết cho 6
cho tổng : A = 12 + 14 +16 + x với x thuộc N .tìm x để :
a) A chia hết cho2 b) A không chia hết cho 2
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
Cho n€ N cmr
n. (n+1) ( n+2 ) (n+3) ( n+4) chia hết cho2, chia hết cho 3, chia hết cho 5
chứng minh rằng với mọi n là số tự nhiên thì n.(n+13) chia hết cho2
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
CMR: n^3 - n chia hết cho 6 với mọi n thuộc Z
n^5 - n chia hết cho 10 với mọi n thuộc Z
chứng minh rằng
a) n^2-nchia hết cho2
b) n^3-n chia hết cho3
c) n^5-n chia hết cho5
giải giúp mình nha