CMR : M = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 1 ( n thuộc N ; n lớn hơn hoặc bằng 2)
Cho: \(S=\dfrac{1^2-1}{1}+\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+....+\dfrac{n^2-1}{n^2}\)(n∈N*). CMR S không phải là số nguyên.
cmr với mọi số tự nhiên n lớn hơn hoặc bằng 2 thì S=3/4+8/9+15/16+...+n2-1/n ko thể là 1 số nguyên
Cho Sn= \(\frac{1^1-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\) (Với \(n\in N\) và n>1)
CMR : Sn k là số nguyên
Cmr: Với mọi số nguyên dương n ta luôn có 1/1^2+1/2^2+1/3^2+...+1/n^2<5/3
Giúp mk nha, mk cần gấp
CMR :
a) 1 số chính phương ko thể viết đc dưới dạng 4n+2 hoặc 4n+3
b) 1 số chính phương ko thể viết đc dưới dạng 3n+2 với n nguyên
c) tính : an =1+2+3+...+n
d) cm : an +an+1 là số chính phương
Bài 3 : CMR :1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n lớn hơn hoặc = 2)
Câu 1: So sánh 2^3^2^3 với 3^2^3^2
Câu 2: cmr: vs mọi n là stn và n>1 thì 5^2^n + 2 có chữ số tận cùng là 7
Câu 3: tìm n là số nguyên sao cho n^2 + n - 17 là bội của bội của n+5
Câu 4: cmr: hiệu các bình phương của 2 số lẻ liên tiếp thì chia hết cho 8
Bài 1: CMR
a) A = \(\frac{\left(n+1\right).\left(n+2\right)....\left(2n-1\right).\left(2n\right)}{2^n}\) là số nguyên.
b) B = \(\frac{3.\left(n+1\right).\left(n +2\right)...\left(3n-1\right).3n}{3^n}\)là số nguyên.