Một xí nghiệp có 3 phân xưởng: phân xưởng I có 99 công nhân, phân xưởng II có 63 công nhân, phân xưởng III có 72 công nhân. Số công nhân được chia thành từng tổ sao cho số người số người trong mỗi phân xưởng được chia đều vào các tổ.a) Hỏi có bao nhiêu cách chia tổ. b) Cách chia nào có số người trong tổ ít nhất? Tính số người lúc đó.
Gọi số tổ là x
Ta có x là ƯC(99,72,63)
99= 32. 11
72=23. 32
63= 7. 32
ƯCLN (99, 63, 72)= 9
Ư(9)={1;3;9}
⇒ ƯC(99, 63, 72)={1,3,9}
Vậy có 3 cách chia là 1,3,9 tổ
Để số người trang mõi tổ ít nhất thì số tổ phải nhiều nhất tứ là chia thành 9 tổ. Vậy một tổ có
99:9+63:9+72:9=24(người)
Gọi số công nhân là : x
mà \(99⋮x;63⋮x;72⋮x\)
\(\Rightarrow xlàUC\left(99;63;72\right)\)
\(99=3^2.11\)
\(72=2^3.3^2\)
\(63=7.3^2\)
UCLN (99, 63, 72)= \(3^2\)= 9
UC(99, 63, 72)= 1,3,9
\(\Rightarrow\)Có 3 cách chia
Để số người trang mõi tổ ít nhất thì số tổ phải nhiều nhất tứ là chia thành 9 tổ
\(\Rightarrow\)1 tổ có:99:9+63:9+72:9= 24 ng