một tổ sản xuất phải làm 120 sản phẩm trong 1 thời gian nhất định với năng suất quy định. Sau khi làm 2 giờ với năng suất quy định, tổ sản xuất tăng năng suất lao động mỗi giờ làm thêm 10 sản phẩm, vì vậy tổ hoàn thành công việc sớm hơn dự định 12 phút. Hỏi theo quy định mỗi giờ tổ phải làm bao nhiêu sản phẩm
Gọi năng suất của tổ theo quy định là $x(x>0; \text{sản phẩm/h}$
Thời gian để làm 120 sản phẩm theo quy định là $\dfrac{120}{x}(h)$
Trong 2h làm theo năng suất quy định thì tổ đã làm được $2x \text{sản phẩm}$
Khi tổ tăng năng suất lao động theo 10 sản phẩm/h thì tổ cần thời gian là: $\dfrac{120-2x}{x+10}(h)$
Do tổ hoàn thành công việc sớm hơn dự định là $12$ phút tức $\dfrac{1}{5}$ (h) nên ta có phương trình sau:
$\dfrac{120}{x}-\dfrac{1}{5}=2+\dfrac{120-2x}{x+10}$
$⇔\dfrac{600-x}{5x}=\dfrac{120-2x+2x+20}{x+10}$
$⇔\dfrac{600-x}{5x}=\dfrac{140}{x+10}$
$⇔(600-x)(x+10)=140.5x$
$⇔600x-x^2-10x+6000=700x$
$⇔x^2-110x-6000=0$
$⇔(x-150(x+40)=0$
⇔\(\left[{}\begin{matrix}x=150\\x=-40\end{matrix}\right.\)
$⇒x=150$ (do $x>0$
Vậy năng suất của tổ là 150 sản phẩm/h