Để giải bài toán này, chúng ta có thể sử dụng phương pháp đặt biểu thức.
Gọi số cần tìm là x. Theo điều kiện của bài toán: x chia cho 36 dư 7.
Tức là tồn tại một số nguyên k sao cho: x = 36k + 7
Giờ ta cần tìm số dư khi x chia cho 12. Thay x = 36k + 7 vào công thức để tính số dư khi chia cho 12: x mod 12 = (36k + 7) mod 12
Sử dụng tính chất môđô của phép cộng và phép nhân, ta có: (36k + 7) mod 12 = ((36k mod 12) + (7 mod 12)) mod 12
Vì 36 chia hết cho 12, nên: (36k mod 12) = 0
Do đó, ta cũng có: (36k + 7) mod 12 = (0 + (7 mod 12)) mod 12 = 7 mod 12
Vậy, số dư khi x chia cho 12 là 7.
Tóm lại, nếu một số chia cho 36 dư 7, thì khi chia số đó cho 12, số dư sẽ là 7.