Gọi vận tốc dự định của ô tô là x (km/h; x > 10)
Gọi chiều dài quãng đường là a (km)
Thời gian dự định là \(\dfrac{a}{x}\) (giờ)
Vận tốc nếu tăng đi 10km/h là x + 10 (km/h)
Thời gian nếu tăng vận tốc là \(\dfrac{a}{x+10}\) (giờ)
Do nếu tăng vận tốc thì ô tô đến B sớm hơn 2 giờ => Ta có phương trình:
\(\dfrac{a}{x}-\dfrac{a}{x+10}=2\) <=> 10a - 2x2 - 20x = 0 (1)
Vận tốc nếu giảm đi 10km/h là x - 10 (km/h)
Thời gian đi khi vận tốc giảm là \(\dfrac{a}{x-10}\) (giờ)
Do nếu giảm vận tốc thì đến B chậm hơn dự định 3 giờ => Ta có phương trình:
\(\dfrac{a}{x-10}-\dfrac{a}{x}=3\) <=> 10a - 3x2 + 30x = 0 (2)
(1)(2) <=> 3x2 - 30x = 2x2 + 20x
<=> x2 - 50x = 0
<=> x (x-50) = 0
Mà x > 10
<=> x - 50 = 0 <=> x = 50 (tm)
Chiều dài quãng đường AB là \(a=\dfrac{2x^2+20x}{10}=600\left(km\right)\)