Đổi 20 phút = \(\dfrac{1}{3}h\)
Thời gian người đó đi từ A đến B là : 10h35-7h=3h35=\(\dfrac{43}{12}h\)
Gọi vận tốc sau đó là x (km/h)(x>0)
vận tốc ban đầu là x+8(km/h)
Thời gian đi \(\dfrac{2}{3}\) đoạn đường đầu là: \(\dfrac{\dfrac{2}{3}.120}{x+8}=\dfrac{80}{x+8}\left(h\right)\)
Thời gian đi quãng đường còn lại là : \(\dfrac{120-80}{x}=\dfrac{40}{x}\left(h\right)\)
Vì tổng thời gian đi hết quãng đường là \(\dfrac{43}{12}h\) nên ta có phương trình:
\(\dfrac{80}{x+8}+\dfrac{40}{x}+\dfrac{1}{3}=\dfrac{43}{12}\)
\(\Leftrightarrow\dfrac{80.12x}{12x\left(x+8\right)}+\dfrac{40.12\left(x+8\right)}{12x\left(x+8\right)}+\dfrac{4x\left(x+8\right)}{12x\left(x+8\right)}=\dfrac{43x\left(x+8\right)}{12x\left(x+8\right)}\)
\(\Leftrightarrow960x+480x+3840+4x^2+32x=43x^2+344x\)
\(\Leftrightarrow39x^2-1128x-3840=0\)
\(\Leftrightarrow13x^2-376x-1280=0\)
\(\Leftrightarrow13x^2-416x+40x-1280=0\)
\(\Leftrightarrow13x\left(x-32\right)+40\left(x-32\right)=0\)
\(\Leftrightarrow\left(13x+40\right)\left(x-32\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}13x+40=0\\x-32=0\end{matrix}\right.\left\{{}\begin{matrix}x=-\dfrac{40}{13}\left(ktm\right)\\x=32\end{matrix}\right.\)
=> x=32
Vậy....