Trong không gian với hệ toạ độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục toạ độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với gốc toạ độ sao cho M là trực tâm của tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
Trong hệ trục toạ độ Oxyz, cho điểm H(2;1;2). Điểm H là hình chiếu vuông góc của gốc toạ độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q): x+y-11=0 là
A. 90 °
B. 30 °
C. 60 °
D. 45 °
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P) đi qua gốc toạ độ và nhận =(3;2;1) là véctơ pháp tuyến. Phương trình của mặt phẳng (P) là:
A. 3x+2y+z-14=0
B. 3x+2y+z=0
C. 3x+2y+z+2=0
D. x+2y+3z=0.
Trong không gian với hệ toạ độ Oxyz, gọi (α) là mặt phẳng qua G ( 1 ; 2 ; 3 ) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A,B, C (khác gốc O) sao cho G là trọng tâm của tam giác ABC. Khi đó mặt phẳng (α) có phương trình:
A. 3x + 6y + 2z + 18 = 0
B. 6x + 3y + 2z - 18 = 0
C. 2x + y + 3z - 9 = 0
D. 6x + 3y + 2z + 9 = 0
Trong không gian với hệ trục toạ độ Oxyz, cho hai điểm A(-1;3;4), B(9;-7;2). Tìm trên trục Ox toạ độ điểm M sao cho M A 2 + M B 2 đạt giá trị nhỏ nhất
A. M(5;0;0)
B. M(-2;0;0)
C. M(4;0;0)
D. M(9;0;0)
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng P : 6 x + 3 y - 2 z + 24 = 0 và điểm A(2;5;1). Tìm toạ độ hình chiếu vuông góc H của A trên (P).
A. H(4;2;3)
B. H(4;2;-3)
C. H(4;-2;3)
D. H(-4;2;3)
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng P : 6 x + 3 y - 2 z + 24 = 0 và điểm A(2;5;1). Tìm toạ độ hình chiếu vuông góc H của A trên (P).
A. H(4;2;3)
B. H(4;2;-3)
C. H(4;-2;3)
D. H(-4;2;3)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz sao cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0).
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz so cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0)