Cho đường tròn tâm O, đường kính AB, M là một điểm thuộc nửa đường tròn. Qua M vẽ vẽ tiếp tuyến với nửa đường tròn, gọi D và C theo thứ tự là các hình chiếu vuông góc của A và B.
a) Chứng minh M là trung điểm của CD
b) Chứng minh AB = BC + AD
c) Giả sử góc AOM > góc BOM. Từ B vẽ đường tròn vuông góc với BC, đường thẳng này cắt AD tại E. Chứng minh E thuộc nửa đường tròn tâm O
d) Xác định vị trí của M trên 1/2 O sao cho tứ giác ABCD có diện tích lớn nhất và tính diện tích đó theo nửa bán kính rồi theo 1/2 đường tròn đã cho.
Giúp em với ạ TvT
Cho nửa đường tâm O , đường kính AB = 4 cm . Kẻ các tiếp tuyến Ax , By cùng phía với nửa đường tròn đối với AB . Gọi C là một điểm thuộc tia Ax . Kẻ tiếp tuyến CE với nửa đường tròn ( E là tiếp điểm ) , CE cắt By ở D .
a . Chứng minh rằng COOD = 90o ( Mình ko biết viết o ở trên không như trong sách ) .
b . Chứng minh rằng hình tam giác bằng chữ A ( ko biết viết hình ) AEB và hình tam giác bằng chữ A ( lại thế ) COD đồng dạng
c . Gọi I là trung điểm của CD . Vẽ đường tròn tâm I bán kính IC . Chứng minh rằng AB là tiếp tuyến của đường tròn ( i ) .
đ . Xác định vị trí của C trên tia Ax để có độ dài nhỏ nhất .
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ nửa đường tròn (O) đường kính AB và vẽ các tiếp tuyến Ax, By. Qua điểm M bất kì thuộc nửa đường tròn kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi giao điểm của AD và BC là N
a)Chứng minh MN vuông góc với AB
b) Chứng minh AC*BD không đổi khi M di chuyển trên nửa đường tròn
c) vẽ Oz vuông góc với AB và cắt CD tại E. Chứng minh khi M di chuyển trên \(\frac{1}{2}\left(O\right)\)thì E chạy trên một tia
d)Chứng minh ACDB có diện tích nhỏ nhất khi nó là hình chữ nhật, Tính Min ACDB?
cho nủa đường tròn (o,R) dduongf kính ab . lấy 1 điểm c thuộc nửa đường tròn sao cho ca<cb kẻ ch vuông góc vs ab . trên cùng một nửa mặt phẳng bờ ab chứa nửa cắt ca tại tròn vẽ 2 nửa đường tròn tâm o1 đường kính ah o2 đường kính HB (o1) cắt ca tại e (o2) cắt cb tại F
a) chứng minh tứ giác CEHF là hình chữ nhật
Cho tam giác ABC vuông ở A( AB>AC), đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A, vẽ nữa đường tròn đường kính BH cắt AB tại E, nửa đường tròn đường kính HC cắt AC tại F. Chứng minh:a, Tứ giác AFHE là hình chữ nhật. b, tứ giác BEFC là tứ giác nội tiếp đường tròn. c, EF là tiếp tuyến chung của 2 nửa đường tròn đường kính BH và HC
Cho nửa đường tròn (O,R) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax và By với nửa đường tròn. Gọi M là 1 điểm trên nửa đường tròn. Tiếp tuyến với nửa đường tròn tại M lần lượt cắt Ax, By tại E và F.
a) CMR AEMO là tứ giác nội tiếp
b) Gọi P,Q theo thứ tự là giao điểm của AM và OE, BM và OF. CMR MPOQ là hình chữ nhật
c) Gọi H là hình chiếu của M lên AB, K là giao điểm của MH và EB. So sánh MK và KH
d) Gọi r là bán kính đường tròn nội tiếp tam giác EOF. CMR 1/3 < r/R < 1/2
ai ko rảnh thì giúp mình cm r/R>1/3 ở ý d là dc r mik camon
1. Trên nửa đường tròn (O;R), đường kính BC lấy điểm A sao cho BA = R. Gọi D là 1 điểm nằm trên cung AC, BD cắt AC tại E. Tia BA cắt tia CD tại M
a. CM tứ giác AEDM nội tiếp
b. Tính góc BMC
2. 1 hình chữ nhật có chiều dài hơn chiều rộng 2cm, đường chéo 10cm. Tính các kích thước của hình chữ nhật đó
3. Cho nửa đường tròn (O) đường kính AB, M là điểm thuộc nửa đường tròn. Trên đường kính AB lấy điểm C sao cho AC < CB. Kẻ 2 tiếp tuyến Ax, By với nửa đường tròn. Dường thẳng qua M vuông góc với MC cắt Ax ở P đường thẳng qua M vuông góc với MC cắt By ở Q. Gọi D là giao điểm của CQ và BM, E là giao điểm của CP và AM
Chứng Minh
a. Các tứ giác APMC, MECD nội tiếp
b. AB//DE
Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O; R) đường kính BC. Vẽ đường cao AH của tam giác ABC. Đường tròn tâm K đường kính AH cắt AB, AC lần lượt tại D và E
a, Chứng minh tứ giác ADHE là hình chữ nhật và AB.AD = AE.AC
b, Cho biết BC = 25cm và AH = 12cm. Hãy tính diện tích xung quanh và thể tích của hình tạo thành bởi khi cho tứ giác ADHE quay quanh AD
Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F
a.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)
b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.
c. Khi C khác O , đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN
d. Chứng minh 3 điểm: N, E, F thẳng hàng
Dùng kiến thức kì 1 ko dùng nội tiếp ai giúp em