Đáp án A.
Theo bài ra ta có chiều cao của hình trụ bằng đường kính đáy của hình trụ và bằng đường kính của mặt cầu.
Gọi bán kính của mặt cầu là R, ta có:
Vậy hình trụ có bán kính R = 2 , chiều cao 2 2 .
Diện tích xung quanh của hình trụ:
Đáp án A.
Theo bài ra ta có chiều cao của hình trụ bằng đường kính đáy của hình trụ và bằng đường kính của mặt cầu.
Gọi bán kính của mặt cầu là R, ta có:
Vậy hình trụ có bán kính R = 2 , chiều cao 2 2 .
Diện tích xung quanh của hình trụ:
Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi S 1 là diện tích 6 mặt của hình lập phương, S 2 là diện tích xung quanh của hình trụ. Tỉ số S 2 / S 1 bằng:
A. π /6 B. 1/2
C. π /2 D. π
Cho hình trụ có bán kính đáy r, gọi O và O' là tâm của hai đường tròn đáy với OO'=2r. Một mặt cầu tiếp xúc với hai đáy của hình trụ tại O và O'. Gọi V C và V T lần lượt là thể tích của khối cầu và khối trụ. Khi đó V C V T bằng
Diện tích xung quanh của hình trụ có bán kính đáy a và đường cao a 3 là:
A. 2 π a 2 3 B. 2 π a 2
C. π a 2 D. π a 2 3
Hình trụ bán kính đáy r. Gọi O và O' là tâm của hai đường tròn đáy với OO' = 2r. Một mặt cầu tiếp xúc với hai đáy của hình trụ lại O và O'. Gọi V C và V T lần lượt là thể tích của khối cầu và khối trụ. Khi đó là
A. 1 2
B. 3 4
C. 2 3
D. 3 5
Cho hình trụ có chiều cao bằng 2a và diện tích xung quanh là π a 2 . Bán kính đáy của hình trụ là:
A. 3 a 4
B. a 2
C. a 3
D. a 4
Cho hình trụ có bán kính đáy a và có thiết diện qua trục là một hình vuông. Diện tích xung quanh của hình trụ là:
A. 3π a 2 B. 2π a 2
C. 4π a 2 D. π a 2
Khi cắt mặt cầu S (O, R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O, R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S (O, R) để khối trụ có thể tích lớn nhất.
Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO’. Chứng minh rằng mặt cầu đường kính OO’ tiếp xúc với hai mặt đáy của hình trụ và tiếp xúc với tất cả các đường sinh của mặt trụ.
Khi cắt mặt cầu S(O;R) bởi một mặt kính, ta được hai nửa mặt cầu và hình tròn lớn của mặt kính đó gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S(O;R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R=1,tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O;R) để khối trụ có thể tích lớn nhất.
Khi cắt mặt cầu S(O;R) bởi một mặt kính, ta được hai nửa mặt cầu và hình tròn lớn của mặt kính đó gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S(O;R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R=1,tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O;R) để khối trụ có thể tích lớn nhất.