Một đường tròn tiếp xúc với hai cạnh của một góc vuông đỉnh A tại hai điểm B và C. Kẻ một tiếp tuyến (d) với đường tròn đã cho cắt các đoạn thẳng AB và AC theo thứ tự E và F. Chứng minh rằng:
\(\frac{AB+AC}{3}< EB+FC< \frac{AB+AC}{2}\)
Cho điểm A nằm ngoài đường tròn (O).Từ A kẻ hai tiếp tuyến AB,AC và cát tuyến ADE tới đường tròn (B,C là hai tiếp điểm;D nằm giữa A&E).Gọi H là giao điểm của AO và BC
a,Chứng minh rằng :ABOC là tứ giác nội tiếp
b,Chứng minh rằng :AH.AO=AD.AE
c,Tiếp tuyến tại D của đường tròn (O)cắt AB,AC theo thứ tự tại I và K.Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB tại P và cắt tia AC tại Q.Chứng minh rằng IP+KQ>=PQ
Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).
1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE^2.3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).4. Đường thẳng SF cắt các đường thẳng AB và AC tương ứng tại P và Q. Đường thẳng OF cắt BC tại K. Chứng minh rằng AK đi qua trung điểm của PQ.Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho đường tròn tâm O đường kính AB . Một điểm C khác A và B nằm trên đường tròn . Tiếp tuyến Cx của đường tròn tâm O cắt AB tại I . Phân giác của góc CIA cắt OC tại O' a) (O',O'C) tiếp xúc với O và tiếp xúc với AB b) Gọi D,E theo thứ tự là giao điểm thứ hai của Ca và CB với (O') C/m D,O',E thẳng hàng c) tìm vị trí của C sao cho đường tròn ngoại tiếp tam giác OCI tiếp xúc với AC
Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc với BC b) Từ B vẽ đường thẳng song song với AC cắt đường tròn tâm (O) tại D (D khác B), AD cắt đường tròn (O) tại E (E khác D). Tính tích AD.AE theo R. c) Tia BE cắt AC tại F. Chứng minh F là trung điểm AC. d) Tính theo R diện tích tam giác BDC.