Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Một đội tuyển tham dự kỳ thi học sinh giỏi 3 môn Văn, Toán, Ngoại ngữ do thành phố tổ chức đạt được 15 giải. Hỏi đội tuyển học sinh giỏi đó có bao nhiêu học sinh? Biết rằng: 
- Học sinh nào cũng có giải. 
- Bất kỳ môn nào cũng có ít nhất 1 học sinh chỉ đạt 1 giải. 
- Bất kỳ hai môn nào cũng có ít nhất 1 học sinh đạt giải cả hai môn. 
- Có ít nhất 1 học sinh đạt giải cả 3 môn. 
- Tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần

Cao Minh Tâm
29 tháng 11 2019 lúc 8:58

Đặt số học sinh đạt giải cả 3 môn, 2 môn, 1 môn lần lượt là a, b, c (học sinh)
Tổng số giải đạt được là:

3 x a + 2 x b + c = 15 (giải). 
Tổng số hs đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. 
Vì bất kỳ 2 môn nào cũng có ít nhất 1 hs đạt giải cả 2 môn nên:
- Có ít nhất 1 hs đạt giải cả 2 môn V và T.
- Có ít nhất 1 hs đạt giải cả 2 môn T và NN. 
- Có ít nhất 1 hs đạt giải cả 2 môn V và NN. 
Do đó b bằng hoặc lớn hơn 3. 
Nếu a = 2 thì b bé nhất là 3, c bé nhất là 4, do đó tổng số giải bé nhất là: 
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). 
Vì vậy a < 2, nên a = 1. 
Ta có: 3 x 1 + 2 x b + c = 15 
suy ra: 2 x b + c = 12. 
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). 
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại do điều kiện b < c) 
Vậy có 1 học sinh đạt 3 giải, 3 học sinh đạt 2 giải, 6 học sinh đạt 1 giải. 
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (học sinh).


Các câu hỏi tương tự
Đặng Đình Tùng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hồ Hòa Bình
Xem chi tiết
le thi yen nhi
Xem chi tiết
Nguyễn Thành Đăng
Xem chi tiết
kaneki ken
Xem chi tiết
nguyên
Xem chi tiết
TRỊNH TRẦN PHƯƠNG MY
Xem chi tiết