Gọi chiều dài 3 tấm vải lần lượt là \(x,y,z\left(x,y,z>0\right)\)
Mà tổng độ dài ba tấm vải là 108, nên ta có:
\(x+y+z=108\)
Sau khi họ bán đi \(\dfrac{1}{2}\) tấm vải thứ nhất, \(\dfrac{2}{3}\) tấm vải thứ hai và \(\dfrac{3}{4}\) tấm vải thứ ba thì số vải còn lại ở ba tấm bằng nhau nên tấm vải thứ nhất còn \(\dfrac{1}{2}\), tấm vải thứ hai còn \(\dfrac{1}{3}\) và tấm vải thứ ba còn \(\dfrac{1}{4}\) :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Leftrightarrow\dfrac{x+y+z}{2+3+4}=\dfrac{108}{9}=12\)
Do đó:
\(x=12.2=24\)
\(y=12.3=36\)
\(z=12.4=48\)
Vậy độ dài tấm vải thứ nhất là 24 m, độ dài tấm vải thứ hai là 36 m, độ dài tấm vải thứ ba là 48 m.