Bài 2:
a.
$P=M+N=-xy^2+3x^2y-x^2y^2+\frac{1}{2}x^2y-xy^2+\frac{-2}{3}x^2y^2$
$=(-xy^2-xy^2)+(3x^2y+\frac{1}{2}x^2y)+(-x^2y^2+\frac{-2}{3}x^2y^2)$
$=-2xy^2+\frac{7}{2}x^2y-\frac{5}{3}x^2y^2$
b.
$Q=N-M=(\frac{1}{2}x^2y-xy^2+\frac{-2}{3}x^2y^2)-(-xy^2+3x^2y-x^2y^2)$
$=(\frac{1}{2}x^2y-3x^2y)-xy^2+xy^2+(\frac{-2}{3}x^2y^2+x^2y^2)$
$=\frac{-5}{2}x^2y+\frac{1}{3}x^2y^2$
c.
$Q=\frac{-5}{2}(-1)^2.\frac{1}{2}+\frac{1}{3}(-1)^2.(\frac{1}{2})^2=\frac{-7}{6}$
Bài 3:
a.
$A(x)=\frac{1}{3}x^2-2x^3+2x-\frac{4}{3}x^2-x-1$
$=-2x^3-x^2+x-1$
$A(x)$ có hệ số cao nhất là $-2$ và hệ số tự do là $-1$
$B(x)=2x^3+x^2+1$
$B(x)$ có hệ số cao nhất là $2$ và hệ số tự do là $1$
b.
$B(x)=(2x^3+2x^2)-(x^2-1)=2x^2(x+1)-(x-1)(x+1)$
$=(x+1)(2x^2-x+1)$
$B(-1)=(-1+1)(2x^2-x+1)=0$ nên $-1$ là nghiệm của $B(x)$
c.
$C(x)=A(x)+B(x)=-2x^3-x^2+x-1+(2x^3+x^2+1)$
$=x$
d.
$C(x)=0\Leftrightarrow x=0$
Vậy $x=0$ là nghiệm của $C(x)$