b, \(cos^25x-sin^2x=0\)
\(\Leftrightarrow cos^25x-cos^2\left(x-\dfrac{\pi}{2}\right)=0\)
\(\Leftrightarrow\left[cos5x-cos\left(x-\dfrac{\pi}{2}\right)\right]\left[cos5x+cos\left(x-\dfrac{\pi}{2}\right)\right]=0\)
\(\Leftrightarrow-4sin\left(3x-\dfrac{\pi}{4}\right).sin\left(2x+\dfrac{\pi}{4}\right).cos\left(3x-\dfrac{\pi}{4}\right).cos\left(2x+\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow-sin\left(6x-\dfrac{\pi}{2}\right).sin\left(4x+\dfrac{\pi}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(6x-\dfrac{\pi}{2}\right)=0\\sin\left(4x+\dfrac{\pi}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-\dfrac{\pi}{2}=k\pi\\4x+\dfrac{\pi}{2}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\\x=-\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)
a, \(\left(cos5x-2\right)\left(3cosx+2\right)=0\)
\(\Leftrightarrow3cosx+2=0\)
\(\Leftrightarrow cosx=-\dfrac{2}{3}\)
\(\Leftrightarrow x=\pm arccos\left(-\dfrac{2}{3}\right)+k2\pi\)