vs đk tổng =1 ta có:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\)
\(=\dfrac{a\left(a+b+c\right)+bc}{bc}+\dfrac{b\left(a+b+c\right)+ca}{ca}+\dfrac{c\left(a+b+c\right)+ab}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\)
sd bđt AM-GM cho 2 số dương ta có:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}\ge2\left(a+b\right)\)
\(\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\ge2\left(b+c\right)\)
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\ge2\left(c+a\right)\)
Cộng theo vế 3 đẳng thức trên ta sẽ có điều phải chứng minh
Đẳng thức xảy ra khi và chỉ khi a = b= c =\(\dfrac{1}{3}\)