\(=ab\left(a-b\right)\left(a+b\right)+c^3\left(a-b\right)-c\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(a^2b+ab^2\right)+c^3\left(a-b\right)-\left(a-b\right)\left(a^2c+abc+b^2c\right)\)
\(=\left(a-b\right)\left(a^2b+ab^2+c^3-a^2c-abc-b^2c\right)\)
\(=\left(a-b\right)\left[ab\left(a-c\right)+b^2\left(a-c\right)-c\left(a^2-c^2\right)\right]\)
\(=\left(a-b\right)\left[ab\left(a-c\right)+b^2\left(a-c\right)-\left(a-c\right)\left(ac+c^2\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(ab+b^2-ac-c^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left[a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)