mọi người ơi giúp mình bài này với
bài 1 :CMR giữa hai số hữu tỉ không âm là vô số số hữu tỉ không âm
bài 2: cho p và q là những số nguyên tố lớn hơn 3 , chứng tỏ rằng:
a) p^2 - 1 chia hết cho 24
b) p^2 - q^2 chia hết cho 24
bài 1 cmr với mọi số nguyên tố lớn hơn 2 và 3 đều có dạng 6k+1 và 6k -1
bài 2 tìm các số tự nhiên xyz thỏa mãn
x2-2y2-1=0
x2+y3=z4
bài 3 cmr chỉ có 1 cặp số nguyên dương a,b để a4+4b4 là số nguyên tố
Bài 1: cho a,b,c là số nguyên tố lớn hơn 3. Chứng minh (a-b(b-c)(c-a) chia hết cho 48.
Bài 2: cho các số nguyên dương a,b,c sao cho (a-b)(b-c)(c-a)=a+b+c. Chứng minh a+b+c chia hết cho 27.
Bài 3: Chứng minh rằng với mọi số nguyên tố lớn hơn p>3 thì 2018-2p^4 chia hết cho 96.
Mọi người giúp em một bài toán chia hết lớp 9 ạ!
Chứng minh rằng với mọi số nguyên m, tồn tại số nguyên n sao cho n³-11n²-87n+m chia hết cho 191
Chứng minh rằng với mọi số nguyên n thì n^2+n+2 không chia hết cho 3
cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau
Giải (copy)
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)
nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)
Vậy m,n là những số lẻ
Gọi (m,n) = d => m2- 2023n2 ⋮ d2 ; mn ⋮ d2 mà m2- 2023n2 + 2022 ⋮ mn nên 2022 ⋮ d2
Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .
Em chưa hiểu tai sao
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4
thầy Cao Lộc phân tích cho em với ạ
Mọi người giúp em với , em cần gấp =() :
Câu 1 : Tìm số tự nhiên \(n\)để \(5^{2n^2-6n+2}-12\)là số nguyên tố
Câu 2 : Chứng minh rằng không tồn tại các bộ 3 số nguyên \(\left(x;y;z\right)\)thỏa mãn đẳng thức : \(x^4+y^4=7z^4+5\)
Câu 3 : Chứng minh rằng \(\left(a,5\right)=1\)thì \(a^{8n}+3a^{4n}-4\)chia hết cho 100.
Câu 4 : Có hay không số nguyên tố \(p\) thỏa mãn \(8p-1;8p+1\)cũng là số nguyên tố ? Giải thích ?
Câu 5 : Tìm \(n\)nguyên sao cho \(s=n^4+10n^3+40n^2+78n+63\)là số chính phương
Câu 6 : Tìm tất cả số tự nhiên \(n\)để \(n^3-n^2-7n+10\)là số nguyên tố .
Bài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế