\(\Rightarrow A=\dfrac{1}{\left(2\cdot2\right)^2}+\dfrac{1}{\left(2\cdot3\right)^2}+\dfrac{1}{\left(2\cdot4\right)^2}+...+\dfrac{1}{\left(2n\right)^2}\\ A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{4}\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{\left(n-1\right)n}\right)\\ A< \dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{n}\right)\\ A< \dfrac{1}{4}\left(1-\dfrac{1}{n}\right)< \dfrac{1}{4}\left(\text{đ}pcm\right)\)