Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mạnh Hùng Nguyễn

m.n hướng dẫn em cách nào để giải những bài gtnn gtln có hằng đẳng thức như này vs ạ
VD:3x2-5x+3

Phương trình bậc hai có dạng: a\(x^2\) + b\(x\) + c 

Bước 1: Đưa nó về bình phương của một tổng hoặc một hiệu cộng với một số nào đó. nếu a > 0 thì em sẽ tìm giá trị nhỏ nhất;  nếu a < 0 thì em sẽ tìm giá trị lớn nhất 

Bước 2: lập luận chỉ ra giá trị lớn nhất hoặc nhỏ nhất

Bước 3: kết luận

                  Giải:

A = 3\(x^2\) - 5\(x\) + 3  Vì a = 3 > 0 vậy biểu thức A chỉ tồn tại giá trị nhỏ nhất

A = 3\(x^2\) - 5\(x\) + 3 

A = 3.(\(x\)2 - 2.\(x\).\(\dfrac{5}{6}\) + \(\dfrac{25}{36}\))  + \(\dfrac{11}{12}\) 

A = 3.(\(x\) - \(\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) 

Vì (\(x-\dfrac{5}{6}\))2 ≥ 0  ⇒ 3.(\(x\) - \(\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x-\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) ≥ \(\dfrac{11}{12}\)

Amin = \(\dfrac{11}{12}\) ⇔ \(x\) = \(\dfrac{5}{6}\)

 


Các câu hỏi tương tự
♥➴Hận đời FA➴♥
Xem chi tiết
DMH Dev
Xem chi tiết
Transformers
Xem chi tiết
Nguyễn Tiến Nam
Xem chi tiết
Nguyen Dieu Linh
Xem chi tiết
Đào Đức Mạnh
Xem chi tiết
Kiều My
Xem chi tiết
Lê Thạch
Xem chi tiết