\(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+......+\frac{1}{49\cdot50}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{49}-\frac{1}{50}\)
\(M=\frac{1}{1}-\frac{1}{50}\)
\(M=\frac{49}{50}\)
\(\Rightarrow M<1\)
M=1-1/2+1/2-1/3+...+1/49-1/50
M=1-1/50<1
=>M<1
Ta có: \(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}\)
\(M=1-\frac{1}{50}=\frac{49}{50}<1\)
Vậy M < 1
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(M=\frac{49}{50}\)
\(\Rightarrow M<1\)
Ta có:
M=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\)......\(\frac{1}{49}-\frac{1}{50}\)
M=\(1-\frac{1}{50}=\frac{49}{80}<1\)
Vậy M<1