Ta có \(M=\frac{1}{125\cdot2^3}\cdot\frac{1}{125\cdot3^3}\cdot\frac{1}{125\cdot4^3}\cdot...\cdot\frac{1}{125\cdot20^3}\)
\(\Rightarrow M=0\)
Ta có \(M=\frac{1}{125\cdot2^3}\cdot\frac{1}{125\cdot3^3}\cdot\frac{1}{125\cdot4^3}\cdot...\cdot\frac{1}{125\cdot20^3}\)
\(\Rightarrow M=0\)
A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdot\cdot\cdot+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
TÍNH NHANH
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right)\cdot\cdot\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
A)\(2009^{\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-15^3\right)}\)
B)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
C)\(\left(\frac{1}{38}-1\right)\cdot\left(\frac{1}{37}-1\right)\cdot\left(\frac{1}{36}-1\right)\cdot...\cdot\left(\frac{1}{2}-1\right)\)
HELP ME!!!!!!!!!!!!!!!!!!!
Tính nhanh : A= \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\cdot\cdot\cdot\frac{10^2}{10\cdot11}\)
Bài 1:
a) \(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+...+\frac{1}{n}\cdot\left(n+1\right)\)
b) \(\frac{1}{1}\cdot2\cdot3+\frac{1}{2}\cdot3\cdot4+\frac{1}{3}\cdot4\cdot5+...+\frac{1}{a}\cdot\left(a+1\right)\cdot\left(a+2\right)\)
tính GTBT:
N=\(\frac{-1^2}{1\cdot2}\cdot\frac{-2^2}{2\cdot3}\cdot\frac{-3^2}{3\cdot4}\cdot\cdot\cdot\frac{-100^2}{100\cdot101}\cdot\frac{-101^2}{101\cdot102}\)
cho Sn= \(\frac{1}{1\cdot2\cdot3\cdot4}\)+ \(\frac{1}{2\cdot3\cdot4\cdot5}\)+ ... + \(\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)}\)
CMR: 18<\(\frac{1}{S_n}\)<=24
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+..+\frac{1}{8\cdot9\cdot10}\cdot x=\frac{22}{45}\)thì x=