dien vao cho cham de don gia cac bieu thuc sau:
a) 1+tan2α=1+\(\left(\dfrac{.....}{.....}\right)^2=\dfrac{...+...}{cos^2\alpha}=\dfrac{....}{cos^2\alpha}\)
b) 1+cot2α=1+\(\left(\dfrac{.....}{.....}\right)^2=\dfrac{...+...}{sin^2\alpha}=\dfrac{....}{sin^2\alpha}\)
c) tan2α+3cos2α-2)
=tan2α[cos2α+2(....+....)-2]
=\(\dfrac{sin^2\alpha}{cos^2\alpha}\) x ...... = ...
Cho \(0< \alpha< 90\). Chứng minh các hệ thức sau:
a) \(\frac{sin^2\alpha-cos^2\alpha+cos^4\alpha}{cos^2\alpha-sin^2\alpha+sin^4\alpha}=tan^4\alpha\)
b) \(sin^4\alpha+cos^4\alpha=1-2.sin^2.cos^2\alpha\)
Cho biểu thức A= 1-2sinα.cosα/sin2α - cos2α với α ≠ 450
a) Chứng minh A = sinα - cosα / sinα + cosα
b) Tính giá trị của biểu thức A biết tanα = 1/3
Cho tan\(\alpha\) =\(\dfrac{1}{2}\) .Tính \(\dfrac{cos\alpha+sin\alpha}{cos\alpha-sin\alpha}\)
Bài 1: Cho tam giác ABC vuông tại A; AB=3cm, AC=4cm. Tính sin B, cos B, tan B, cot B.
Bài 2: Cho \(\sin\alpha=0,6\). Tính \(\cos\alpha\), \(\tan\alpha\), \(\cot\alpha\) .
Bài 3: Cho tam giác ABC nhọn; BC=a, AB=c, AC=b. Chứng minh rằng \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\).
Tính \(A=\dfrac{\sin^2\alpha-\cos^2\alpha}{\sin\alpha.\cos\alpha}\) khi biết \(\tan\alpha=\sqrt{3}\)
Chứng minh rằng sinα< tanα; và cosα < cotα
Bài 1: Cho hình bình hành ABCD có \(\widehat{A}\)=45, AB=BD=18
a) Tính độ dài AD
b) Tính diện tích hbh ABCD
Bài 2: Cho tam giác nhọn ABC, AB<AC, đường cao AH=h và đường trung tuyến AM, đặt \(\widehat{HAM}=\alpha\). CMR:
a) HC - HB =\(2h\tan\alpha\)
b) \(\tan\alpha=\dfrac{\cot C-\cot B}{2}\)
Bài 3: Cho tam giác nhọn ABC. CMR: \(\dfrac{BC}{\sin A}=\dfrac{CA}{\sin B}=\dfrac{AB}{\sin C}\)
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Đặt BC=a, CA= b, AB=c. CMR
a)\(AH=a\sin B\cos B\)
b)\(BH=a\cos^2B\)
c)\(CH=a\sin^2B\)
CÁC BẠN GIẢI CHI TIẾT GIÙM MÌNH NHÉ
MÌNH CẢM ƠN Ạ!
rút gọn biểu thức
\(3\times\left(\sin^4+\cos^4\right)-2\times\left(sin^6+\cos^6\right)\)