\(M=1+1,5+2+2,5+...+1007,5\)
\(M=\frac{1007,5+1}{2}.2014=1015559,5\)
\(M=1+1,5+2+2,5+...+1007,5\)
\(M=\frac{1007,5+1}{2}.2014=1015559,5\)
Tính \(M=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{2014}.\left(1+2+3+...+2014\right)\)
\(A=\frac{\left(1-2\right).\left(1+2\right)}{2^2}.\frac{\left(1-3\right).\left(1+3\right)}{3^2}.......\frac{\left(1-2013\right).\left(1+2013\right)}{2013^2}.\frac{\left(1-2014\right).\left(1+2014\right)}{2014^2}\)
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{2013^2}-1\right).\left(\frac{1}{2014^2}-1\right)\)
\(A=\left(\frac{-1}{2}\right).\left(\frac{-1}{2}\right)^2.\left(\frac{-1}{3}\right)^3.\left(\frac{-1}{4}\right)^4...\left(\frac{-1}{2}\right)^{2014}\). Hãy cho biết dấu của A, vì sao ?
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{2013^2}-1\right).\left(\frac{1}{2014^2}-1\right)\)=?
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right),\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2014}\right)\)
tính tích:
\(\left(1-\frac{1}{2014}\right).\left(1-\frac{2}{2014}\right).\left(1-\frac{3}{2014}\right)...\left(1-\frac{2015}{2014}\right)\)
Tính A = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2014}\right)\left(1-\frac{1}{2015}\right)\left(1-\frac{1}{2016}\right)\)
Chứng tỏ:
a) \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)\left(1+\frac{1}{2^4}\right)....\left(1+\frac{1}{2^{50}}\right)< 3\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
d) \(\frac{1}{2}-\frac{1}{2^2}+.............+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)