1. Determine all pairs of integer (x;y) such that \(2xy^2+x+y+1=x^2+2y^2+xy\)
2. Let a,b,c satisfies the conditions
\(\hept{\begin{cases}5\ge a\ge b\ge c\ge0\\a+b\le8\\a+b+c=10\end{cases}}\)
Prove that \(2a^2+b^2+c^2\le38\)
3. Let a nad b satis fy the conditions
\(\hept{\begin{cases}a^3-6a^2+15a=9\\b^3-3b^2+6b=-1\end{cases}}\)
Find the value of\(\left(a-b\right)^{2014}\) ?
4. Find the smallest positive integer n such that the number \(2^n+2^8+2^{11}\) is a perfect square.
Suppose that x, y, z are positive integers such that x > y > z > 663 and x, y, z satisfy x + y + z = 1998 and 2x + 3y + 4z = 5992. Find x, y, z
the sum A of 191 consecutive positive integers is a perfect square . Find the largest of those 191 positive integers so that A has the smallest value
The number of ordered pairs (x; y) where x, y ∈ N* such that x2y2 - 2(x + y) is perfect square is .......
The number of ordered pairs (x; y) where x, y ∈ N* such that x2y2 - 2(x + y) is perfect square is ..
The number of ordered pairs (x; y) where x, y ∈ N* such that x 2 y 2 - 2(x + y) is perfect square
is ...........
let m and n bel positive integers such that the fraction m/n is irreducible and the fraction 4m+3n/5m+2n is not irreducible. Find the greatest common divisor of 4m+3n and 5m+2n
Let a,b be the roots of equation \(x^2-px+q=0\) and let c,d be the roots of the equation \(x^2-rx+s=0\), where p,q,r,s are some positive real numbers. Suppose that :
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}\)
is an integer. Determine a,b,c,d .
Let a;b;c be positive real numbers such that \(a^2+b^2+c^2=\frac{1}{3}\). Prove that :
\(4\left(a+b+c\right)+\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge10\)