[A + 1] = [A] + 1
Chứng minh 1 < A < 2 (chtt) => [A] = 1 => [A] + 1 = 2
Cái bài chứng minh cũng A kiểu này, chứng minh A ko phải số nguyên có chứng minh 1 < A < 2 đó
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
[A + 1] = [A] + 1
Chứng minh 1 < A < 2 (chtt) => [A] = 1 => [A] + 1 = 2
Cái bài chứng minh cũng A kiểu này, chứng minh A ko phải số nguyên có chứng minh 1 < A < 2 đó
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Bài 1: Kí hiệu [x] là số nguyên lớn nhất không vượt qua x, gọi là phần nguyên của x.
a) Tính: \(\left[-\frac{1}{7}\right]\); [3,7]; [-4]; \(\left[-\frac{43}{10}\right]\)
b) Cho x= 3,7. So sánh:
A= [x]+\(\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)và B=[5x]
c) Tính: \(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
d) Cho x thuộc Q. So sánh x và [x]
Bài 2: Cho b khác 0, d khác 0, a khác b.
Tìm \(\frac{c}{d}\)sao cho \(\frac{a}{b}+\frac{c}{d}=\frac{a}{b}-\frac{c}{d}\)
Cho \(\frac{a}{b}\)=\(\frac{c}{d}\), với a, b, c và d là các số tự nhiên khác 0. Kí hiệu (x;y) và [x;y] tương ứng là ước chung lớn nhất và bội chung nhỏ nhất của hai số tự nhiên x và y.
Chứng minh rằng \(\frac{\left(a;d\right)}{\left(b;c\right)}=\frac{\left[b;c\right]}{\left[a;d\right]}\)
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c,d thoả mãn:
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{d+a+b}{c}\)
Tìm: \(B=\left(1+\frac{a+b}{c+d}\right)\cdot\left(1+\frac{b+c}{d+d}\right)\cdot\left(1+\frac{c+d}{a+b}\right)\cdot\left(1+\frac{d+a}{b+c}\right)\)
Câu 1: \(A=2015^{n+2}-2014^{n+6}+2015^{n+4}+2014^{n+8}\)(n là một số tự nhiên). Chứng minh rằng A chia hết cho 10
Câu 2: a)Cho biểu thức \(B=\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\).Tính giá trị của B biết x=\(\frac{1}{2}\) và y là số nguyên âm lớn nhất.
b)Tính giá trị biểu thức \(c=\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right)\frac{1-3-5-7-...-49}{89}\)
Câu 3:a/Tìm giá trị nhỏ nhất của \(M=\left|19-x\right|+\left|x-2\right|\) khi x thay đổi
b/ Tìm giá trị nhỏ nhất của x biết \(\left(x-2015\right)^{x+9}-\left(x-2015\right)^{x+2}=0\)
Câu 4: Cho a;b;c;d là các số khác 0 và \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tìm giá trị biểu thức:\(N=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.
b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.
c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên
Bài 2:a,Với giá trị nào của x thì ta có:
1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương 2,B=\(\frac{x-0,5}{x+1}\)là số âm.
b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)
c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.
Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)
B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\) C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\) D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\) F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)
1)Tính GTLN của biểu thức sau
A=\(\frac{1996x+1}{1997x-1997}\)
x là số nguyên, x > 1 hoặc bằng 1
2) Tìm x,y biết
\(x\left(x+y\right)=\frac{1}{48}\)
\(y\left(x+y\right)=\frac{1}{27}\)
3) Cho a,b,c,d >0, CMR:
A=\(\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\)
không phải là số nguyên
GIÚP MÌNH NHA !
MÌNH ĐANG CẦN GẤP
Biet \(\frac{-a+b+c+d}{a}=\frac{a-b+c+d}{b}=\frac{a+b-c-d}{c}=\frac{a+b+c-d}{d}\)
Tinh gia tri bieu thuc \(\left(\frac{a}{b}+1\right).\left(\frac{b}{c}+1\right).\left(\frac{c}{d}+1\right).\left(1+\frac{d}{a}\right)\)
cho a;b;c;d là các số thực khác 0 thảo mãn
\(\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}\)
Tính giá trị của biểu thức
\(M=\frac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}\)