\(\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2\)
\(=x^4+2x^2+1-x^2\)
\(=x^4+x^2+1\)
\(\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2\)
\(=x^4+2x^2+1-x^2\)
\(=x^4+x^2+1\)
dùng hằng đẳng thức đã học
\(\left(3x^2-x-1\right)\left(3x^2+x-1\right)\)
Dùng hằng đẳng thức để triển khai và thu gọn
\(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)
Dùng hằng đẳng thức để triển khai và thu gọn"
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
Dùng hằng đẳng thức để biến tổng (hiệu) sau thành tich
a) \(\left(x+2y\right)^2-16\)
b)\(\left(x-2y\right)^2-4\left(x-2y\right)+4\)
c)\(\left(a^2+1\right)^2-6\left(a^2+1\right)+9\)
d)\(\left(x+y\right)^2+\left(x+y\right)x+\frac{1}{4}x^2\)
sử dụng hằng đằng thức để rút gọn các đa thức sau :
a)\(\left(1+x\right)^2+\left(1-x\right)^2\)
b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)
c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)
d) \(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)
e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)
f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)
g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)
Phân tích đa thức thành nhân tử bằng pp dùng hằng đẳng thức
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
Ứng dụng các hằng đẳng thức đáng nhớ để thực hiện phép tính:
a)\(\left(m+n\right)\left(m^2-mn+n^2\right)\)
b)\(\left(a-b-c\right)^2-\left(a-b+c\right)^2\)
c)\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)\)
giải phương trình : \(\frac{1}{\left(x+a\right)^2-1}+\frac{1}{\left(x+1\right)^2-a^2}=\frac{1}{x^2-\left(a+1\right)^2}+\frac{1}{x^2-\left(a-1\right)^2}\)( a là hằng số)
Giải thích hộ mk chỗ (*)này:
\(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)[\left(x^2\right)^2+xy+\left(y^2\right)^2]\)(Đây là hằng đẳng thức số 7)
=\(\left(x^2-y^2\right)\left(x^4+xy+y^4\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^4+y^4+xy\right)\)(Bước này khai triển hằng đẳng thức số 3 trong(x^2-y^2)
\(=\left(x^2+y^2\right)^2-2x^2y^2+x^2y^2\)(*)(Chỗ này giải thích hộ mk với)
\(=\left(x^2+y^2\right)^2-\left(xy\right)^2=\left(x^2+xy+y^2\right)\left(x^2+y^2-xy\right)\)(Đây là hằng đẳng thức số 3)
Vậy giúp mk nha, cảm ơn trước!