ta gọi biểu thức đó là A
A=1/2.2+1/3.3+...+1/2014.2014
=> A <1/1.2+1/2.3+...+1/2013/2014
=>A<1-1/2+1/2-1/3+1/3-1/4+....+1/2013-1/2014
=>A<1-1/2014
=>A<2013/2014
ta gọi biểu thức đó là A
A=1/2.2+1/3.3+...+1/2014.2014
=> A <1/1.2+1/2.3+...+1/2013/2014
=>A<1-1/2+1/2-1/3+1/3-1/4+....+1/2013-1/2014
=>A<1-1/2014
=>A<2013/2014
Cho \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{2014^2}-1\right)\)
\(1+\frac{1}{2}\cdot\left(1+2\right)+\frac{1}{3}\cdot\left(1+2+3\right)+\frac{1}{4}\cdot\left(1+2+3+4\right)+\cdot\cdot\cdot\frac{1}{20}\cdot\left(1+2+3+4+....+20\right)\)
Tính các tích sau: với n là số tự nhiên, n<3
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{n}\right)\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{n^2}\right)\)
\(\left[6\cdot\left(-\frac{1}{3}\right)^2-3\cdot\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
Tinh \(B=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot....\cdot\left(\frac{1}{98^2}-1\right)\cdot\left(\frac{1}{99^2}-1\right)\)
A)\(2009^{\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-15^3\right)}\)
B)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
C)\(\left(\frac{1}{38}-1\right)\cdot\left(\frac{1}{37}-1\right)\cdot\left(\frac{1}{36}-1\right)\cdot...\cdot\left(\frac{1}{2}-1\right)\)
HELP ME!!!!!!!!!!!!!!!!!!!
Tính \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{x^2}\right)\)=\(\frac{1007}{2012}\)
\(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot\cdot\cdot\left(\frac{1}{2013}-1\right)\)
\(C=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot....\cdot\left(1-\frac{2}{99\cdot100}\right)\)