a) Tìm số tự nhiên n biết:
\(\dfrac{4}{3\cdot5}+\dfrac{8}{5\cdot9}+\dfrac{12}{9\cdot15}+....+\dfrac{32}{n\cdot\left(n+16\right)}=\dfrac{16}{25}\)
b) Chứng tỏ rằng:
\(\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2018}>4\)
Tính:\(\left(2018-\frac{1}{3}-\frac{2}{4}-\frac{3}{5}-...-\frac{2018}{2020}\right):\left(\frac{1}{15}+\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}\right)\)
Thực hiện phép tính:\(\left(1-\frac{1}{2018}\right).\left(1-\frac{2}{2018}\right).\left(1-\frac{3}{2018}\right)...\left(1-\frac{2020}{2018}\right)\)
Bài 5. Tìm \(y\) biết:
a) \(\left(y+\dfrac{1}{2}\right)+\left(y+\dfrac{1}{4}\right)+\left(y+\dfrac{1}{8}\right)+\left(y+\dfrac{1}{16}\right)=1\)
b) \(\left(y+\dfrac{1}{2}\right)+\left(y+\dfrac{1}{4}\right)+\left(y+\dfrac{1}{8}\right)+...+\left(y+\dfrac{1}{1024}\right)=1\)
125%.\(\left(\dfrac{-1}{2}\right)^2\):\(\left(1\dfrac{5}{16}-1,5\right)\)+\(2018^0\)
125% . \(\left(\dfrac{-1}{2}\right)^2:\left(1\dfrac{5}{16}-1.5\right)+2018^0\)
Tìm x:
a) \(\dfrac{1}{3}.x+\dfrac{2}{5}\left(x-1\right)=0\)
b)\(-5.\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)=x\)
c)\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2x\right)=0\)
d)\(9.\left(3x+1\right)^2=16\)
Tính
\(\left(2018-\frac{1}{3}-\frac{2}{4}-\frac{3}{5}-\frac{4}{6}-...-\frac{2018}{2020}\right):\left(\frac{1}{15}+\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Tìm x liên quan đến lũy thừa:
1, \(\left(3x-\dfrac{1}{5}\right)^2=\left(\dfrac{-3}{25}\right)^2\)
2, \(\left(2x-\dfrac{1}{3}\right)^2=\left(\dfrac{-2}{9}\right)^2\)
3, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
4, \(\left(5-x\right)^2=25\)