Giải hệ phương trình
a, \(\left\{{}\begin{matrix}\sqrt[4]{x^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{x+\frac{1}{y}}+\sqrt{x+y-3}=3\\2x+y+\frac{1}{y}=8\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(\frac{x}{y}+\frac{y}{x}\right)\left(x+y\right)=4\\\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\left(x^2+y^2\right)=4\end{matrix}\right.\)
Giải hpt :
\(\left\{{}\begin{matrix}x+\frac{1}{x}=y^2+1\\y+\frac{1}{y}=z^2+1\\z+\frac{1}{z}=x^2+1\end{matrix}\right.\)
giải hệ
\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
giải hệ pt sau \(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
giải hệ
\(\left\{{}\begin{matrix}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{matrix}\right.\)
giải hệ phương trình đối xứng loại 2
\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
giải hệ
\(\left\{{}\begin{matrix}x-3y=\frac{4y}{x}\\y-3x=\frac{4x}{y}\end{matrix}\right.\)
1)\(\left\{{}\begin{matrix}1+x^3y^3=19x^3\\y\left(1+xy\right)=-6x^2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}\sqrt{x-4}+\sqrt{y-1}=4\\x+y=63\end{matrix}\right.\)